Interest

Simple Interest

- one time (informal loans)
 - · borrow \$5000 & agree to pay in 1 year wy 3% simple interest
 - · will pay $(\$5000) \times (\underline{}) = \$5,150$ (interest \$150)
- over time (bonds)
 - · buy \$5000 bond that pays 3% simple interest annually and matures in 5 years
 - * do not earn interest on the interest
 - · will get \$5000 plus 5 years of interest interest per year: 0.3 × \$5000 = \$150

future value increases __ with time:

 $$5000 + (.03 \times $5000) \alpha$

After 5 years (x=5): \$5000 + (\$150)(5) = \$5750

Compound Interest

- interest on interest
 - · borrow \$5000, 3% interest rate, compounded annually \$5000 + (0.03)(\$5000) = \$5000(1.03) = \$5150 $$5150 + (0.03)($5150) = $5000(1.03)^2 = 5304.50

future value increases with time After x years: \$5000 (1.03)2

4 after 5 years (x=5): \$5796.37

Simple vs Compound Interest Over Time

Year	<u>Simple</u>	Compound	Compound
0	\$5000	\$ 5000	\$ 10000 + simple
10	\$ 6500	\$ 6719.58	
20	\$ 8000	\$ 9030.56	\$ 6000
30	\$ 9500	\$12136.31	
			0 10 20 30

Subsidized vs. Unsubsidized Loans

- subsidized: government pays interest while you are in school
 - · amount to pay back does not start increasing until after grace period ends
- unsubsidized : interest accrues from Day 1
 - · if you pay off the interest yourself as time goes on, you don't pay interest on interest

Frequency of Compounding

Interest may be compounded every year:

Future Value in α years (Initial Amt.) (1 + Interest Rate)

Or more often, ex: quarterly, once a month, etc.

Ex \$5000, 3% annual interest rate (APR), compounded quarterly - How much interest added at end of first quarter (3 months)?

- Divide annual interest rate by 4 : .75% (0.0075)
 - · Interest at end of first quarter:
 - .75% of \$5000 : (____) × (____) = ____

Annual Percentage Yield (APY) or Effective Rate

- · Find the factor of increase over one year:

 <u>amt. after one year</u>

 initial amt.
- Subtract 1 to get percentage of increase over one year; $APY = \frac{amt. \text{ after one year}}{\text{initial amt.}} 1$

Back to Ex: How much after
$$\alpha$$
 years?

Start with \$5000

Increase by factor of $(1 + \frac{0.03}{4})$

L do this 4 times a year for α years: 4α times

 \Rightarrow Future Value: \$5000 $(1 + \frac{0.03}{4})^{4\alpha}$

in α years

In general, future value in
$$\alpha$$
 years is:

(Initial) \times (1+ annual interest rate

Amt.) \times (1+ # times compounded per year)

Abbreviated:

$$FV = P \times (1 + \frac{\Gamma}{n})^{n \times n}$$
 $r = \text{annual interest rate (APR)}$
 $n = \# \text{ times per year that interest is compounded}$

future value

after x years

initial amt.

"principal" or "present value"

Interest Lab Work

Loan \$8000 5.8% interest

- O Calculate FV in 4 years, using tables in Excel, if interest is compounded:
 - (a) annually (b) quarterly (c) monthly
- ② Calculate FV in 4 years, using FV formula, if interest is compounded
 - (a) annually; compare wy 1(a).
 - (b) quarterly; compare w/ 1(b).
 - (c) monthly; compare wy 1(c).
 - (d) weekly.
 - (e) daily.
- 3 Calculate APY for each situation in #2.

For Report:

- · Basic Work: Budget, Expense Tracker, Interest 1a, 2a, 3a
- · Continued : Interest 1bc, 2bc, 3bc
- · Further: Interest 2de
- · Above and Beyond : Continuously Compounded Interest (See Canvas)